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ABSTRACT

Minimum ClassificationError (MCE) training is diffi-
cult to applyto languagemodelingdueto inherentscarcity
of trainingdata(N-bestlists). However, a whole-sentence
exponentiallanguagemodelis particularlysuitablefor MCE
training, becauseit can usea relatively small numberof
powerful featuresto captureglobal sententialphenomena.
We review the model,discussfeatureinduction, find fea-
turesin boththeBroadcastNewsandSwitchboarddomains,
andbuild anMCE-trainedmodelfor the latter. Our exper-
imentsshow that even modelswith relatively few features
areproneto overfittingandaresensitive to initial parameter
setting,leadingus to examinealternative weightoptimiza-
tion criteriaandsearchalgorithms.

1. MCE FOR LANGUAGE MODELING

Languagemodelsaretypicallyusedin thecontext of aBayesian
classifier, usuallyfilling the role of the prior, asin speech
recognition:
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where � is the incomingacousticsignaland � is a sen-

tenceor utterance.
If theacousticmodelstructure��� �!� �#� andthelanguage

model structure �$� ��� are correct,and if there is enough
acousticdataandlanguagedatato estimatetheirparameters
reliably, thenusinga maximumlikelihood estimate(MLE)
for �$� ��� in theabove classifieris guaranteedto beoptimal.
In practice,of course,noneof theseassumptionshold. A
temptingalternative is thus to set the languagemodelpa-
rametersto directlyminimizerecognitionerrorrate.

This approach,called discriminative training or Mini-
mumClassificationError (MCE) training,hasbeenusedin
acousticmodelingwith somesuccess[1]. But MCE has
traditionally beendifficult to apply to languagemodeling,
becauseof thevery large numberof tunableparametersin
a languagemodel,as comparedwith the modestamounts

of utterancesavailablefor directly minimizing recognition
errors. In fact, the amountof dataavailable for language
model MCE training (thousandsof utterances)is several
ordersof magnitudesmaller than that available for MLE
training(typically in thehundredsof millions of words).In
contrast,in acoustictrainingthesamedatacanbeusedfor
eitherMCE or MLE training.

As aresult,theonly languagemodelrelatedMCE train-
ing in mostspeechrecognitionsystemsis in determining
optimalvaluesfor thelanguagemodelweight(andperhaps
theword insertionpenalty, noisepenalty, etc.) from a setof
developmentN-bestlists. This is typically doneasfollows.
Let %'& �)( �*��+-,.� ��� % � & � ( � bethe“acousticscore”of a
givenhypothesis( , let /�& �)( �*��+-,.� �$� & � ( � beits “lan-
guagescore”,andlet 0214365 �)( � and 02768:9 5<; �)( � bethenumber
of wordsandnoisesoundsin the hypothesis,respectively.
Thenthetotal weightedscorefor ( is:
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For a given A , thehypothesesin a givenN-bestlist can
be sorted,andthe numberof errorsin the highestscoring
hypothesiscanbecounted.Parametersettingsfor A arethen
soughtto minimizetheWord Error Rate(WER) of a given
developmentsetof N-bestlists. This is typically doneus-
ing a heuristicgrid searchsuchasPowell’s algorithm[?],
which searchesthe spacedefinedby the A s. Note that the
searchis not guaranteedto find theglobalminimum.How-
ever, given the low dimensionalityof the parameterspace
(3 in thisexample),this is notaseriousproblemin practice.
Also, thelow dimensionalityof thespacerendersthesearch
computationallyfeasible,andthesmallnumberof parame-
tersavoidsoverfittingof themodelto thedevelopmentset.

2. MCE WITH WHOLE-SENTENCE
EXPONENTIAL LMS

Whole-utteranceexponential(a.k.a.maximumentropy)lan-
guagemodels[2, 3, 4, 5] areof theform:
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where

J
is a universalnormalizingconstant,and � K � �#�

is a baselinemodel,oftenderivedfrom anngram,e.g.:
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S Q � ��� ’s arefeatures – arbitrarycomputableproper-
tiesof thesentence,andthe A Q aretheir associatedparame-
ters.

In this typeof non-conditionalmodel,a relatively small
setof featurescanbedesignedthatcaptureglobal aspects
of theutterance,suchasits grammaticality, semanticcoher-
ence,etc. In fact, it canbeshown (e.g. [4]) thatmostof the
benefitin suchamodelis likely to comefrom commonfea-
tures,namelythosethat arenon-zeroa significantfraction
of thetime(asopposedto, say, individualN-gramfeatures,
themajorityof whicharevery rare).

Conditionalexponentialmodelsareusuallytrainedus-
ing the GeneralizedIterative Scalingprocedure[6] or its
variant[7]. This resultsin theMLE of theexponentialfam-
ily. Whole-utteranceexponentialmodelscan similarly be
MLE-trainedusingsampling,aswasdonein [3].

Butwhole-utteranceexponentialmodelscanalsobeMCE
trained,as follows. The log-likelihoodof a modelwith b
featuresis givenby
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The last termis a weightedsum,which canbedirectly
(albeit only locally) optimizedfor MCE as in equation1.
In fact, thesecondterm( +k,f� � K � ��� ) canalsobeassigneda
weight,andtheotherfeaturesof equation1 canbeaddedto
themix aswell, for joint optimization.

But the issuesraisedat the endof section1 mustnow
berevisited.First,with morethantwo or threedimensions,
a globally optimal (or even nearoptimal) solutionmay be
harderto find, sincetherearemoreopportunitiesfor local
minima. Second,the computationalrequirementsof Pow-
ell’s algorithmmay scalebadly, making it difficult to do
propermodelselection(i.e. to try many differentsetsof
features). Last, the increasein the numberof parameters
meansthatoverfitting to thedevelopmentsetmay turn out
to bea problemafterall.

3. MCE FEATURE INDUCTION METHODOLOGY

In [5] wepresentedaninteractivefeatureinductionmethod-
ologyfor MLE trainedexponentialmodels.Thebasemodel,

� K � �#� , is usedto generatea corpusof ’pseudo-sentences’.
This corpusis comparedand contrastedwith a corpusof
realsentencesfrom thesamedomain.Thegoalis for a hu-
manobserver to detectsystematiclinguistic and/orstatisti-
cal differencesbetweenthe two corpora. When any such
differenceis encodedasa new feature

S � ��� , its distribution
will differ betweenthe two sources,and addingit to the
model is guaranteedto result in increasedlikelihood (i.e.,
reducedperplexity).

A similar methodologycan be usedfor ’hunting’ for
featuressuitablefor MCE training. Insteadof comparing
baseline-generatedsentenceswith realones,thehumanob-
servercomparesthetop-1decoderhypothesesin agivenset
of N-bestlists with their correspondingtranscripts,where
the N-best lists were derived using the baselinelanguage
model. Again, systematicdifferencesaresoughtandthen
encodedin new features

S � �#� .
Another variant on this themeis to comparethe true

transcriptsnotonly with thetop-1hypotheses,but alsowith
otherhypothesesfurtherdown in the N-bestlists. The un-
derlyingobservation is that the additionalhypothesescon-
tain someexamplesof recognitionerrorsthatarenot found
in the top-1 hypotheses.Theseerrorscan and shouldbe
learnedfrom, sincethey mayvery well occurin futuretop-
1 recognizeroutputs.Theadditionalhypotheseseffectively
increasetheamountof dataavailablefor featureinduction.
We will usea similar argumentin section6 to effectively
increasetheamountof datafor MCE training.

4. FEATURE HUNTING IN BROADCAST NEWS

We began our featurehunting in the BroadcastNews do-
main. Using the methodologydescribedin the previous
section,wecomparedtop-1hypothesesandtranscriptscor-
respondingto over13,000N-bestlists (some432,000refer-
encewords)derivedfrom theTREC-6developmentsetby
theSphinxGroupat CMU.

An exampleof a featurethatemergedfrom thismethod-
ology is the numberof repetitionsof pronounsin a sen-
tence. For exampleif the word “her” appearedtwice in a
sentence,this wascountedasa repetition. Similarly if the
words“him” and“he” appearedtogetherin a sentence,this
wasalsocountedasa repetition. In a testof theapproach,
wetrainedanexponentialmodelwith this single feature us-
ingMCE andPowell’salgorithm.Wefoundthatthisfeature
alonereducedWERby 0.06%onthetrainingsetand0.05%
ona held-outtestset(giventhenumberof referencewords,
thesedifferencesarestatisticallysignificant).

In searchingfor morepowerful features,we lookedat
familiesof relatedfeatures.Onesuchfamily weconsidered
wasthesequenceof verbtensesin a sentence.We focused
on the last verb in eachverb phrase(e.g. the word “sit-
ting” in thephrase“hasbeensitting”). This featurecanbe



Table1: Ratioof probabilitiesof verb tensetransitionsbe-
tweenthetop-1hypothesesandthereferencetranscripts.

Verbtense 1 2 3 4 5 6
1 1.02 0.93 1.05 1.04 0.84 1.13
2 1.04 0.84 1.06 1.12 0.89 1.16
3 1.16 1.04 0.84 1.03 0.98 0.93
4 1.14 0.94 0.94 0.87 0.93 1.17
5 1.01 0.96 1.06 1.05 0.87 1.07
6 1.18 1.16 0.94 1.31 0.92 0.78

thoughtof asa long-distancebigramof verbtenses.Thesix
verbtensesweusedwere1: baseform, 2: non-thirdperson
presentsingular, 3: pastparticiple,4: third personpresent
singular, 5: presentparticiple,and6: pasttense.First, all
thewordsin eachutteranceweretaggedfor part-of-speech
We thencreateda matrix in which every elementwasthe
numberof sentencesin whicheachtensewasfollowed(pos-
sibly atsomedistance)by someothertense.Whenwecom-
paredthesematricesfor the referencetranscriptsand the
top-1hypotheses,we foundsomelargedifferencesfor cer-
tain pairsof tenses(Table1). In particular, the frequency
with which one tenseis followed by the sametense(the
matrix diagonalin table1) is generallylower in the top-1
hypothesesthanin the referencetranscripts.For example,
tense6 is only 78%aslikely to be followedby tense6 in
the top-1 hypothesesas in the referencetranscripts. This
suggeststhat thebaselinelanguagemodelusedin deriving
theN-bestlistsdoesnotadequatelycapturesame-tensecor-
relations.Thesmallvaluesin column5 resultbecausethis
tenseis under-representedin the top-1 hypothesesrelative
to thereferences— anotherusefulfeature.

Otherpotentialfeaturesweareconsideringincludesame-
stemcorrelations(e.g.,bank,banks,banker, banking,banked),
the frequency of variousparts-of-speech(POS) in a sen-
tence,andother featuresinvolving varioustypesof long-
distancebigrams,suchasbigramsof prepositionsor deter-
miners.Wewouldalsolike to developameasureof seman-
tic coherencebasedon thedistributionof contentwordsin
sentences,thenusethat measureasa feature.For work in
thisdirection,see[8].

5. APPLYING MCE TRAINING TO
SWITCHBOARD

We startedour featurehuntingin the BroadcastNews do-
main, becausewe expectedthe utterancesthereto be rea-
sonablywell formedandcorrespondroughly to linguistic
boundaries,andalsobecauseof thelargenumberof N-best
lists availablein that domain. But, asthe hub5evaluation
drew near, we decidedto try the approachin the Switch-
boarddomain. To this endwe received1143development
setN-bestlists from theSRIhub5evaluationteam.

We first attemptedto applythe featureswe haddiscov-
eredin theBroadcastNews domainto theSwitchboarddo-
main. We useda cross-validatoryapproachto selectfea-
turesfor inclusionin themodel.We split thetrainingsetin
half andusedMCEandPowell’salgorithmto fit theweights
on onehalf of the setand thenusedtheseweightson the
otherhalf andcalculatedthe resultingchangein WER for
thisheld-outset.Weexaminedthefollowingsentence-level
features:l pronounrepetitionasdescribedpreviouslyl repetitionof words, with the words groupedinto 4

classesbasedontheir frequency in thedataset,giving
us one featurefor the repetitionof commonwords,
a secondfor the repetitionof lesscommonwords,a
third for evenlesscommonwordsandafourthfor the
remainingwordsl countsof POSfor a groupof 26 POSfrom thePenn
Treebanktagsetl countsof verbphrasesl countsof noises,laughs,pausesandmouthsnoisesl countof unknown words(@REJECT@tokens)l countsof tense-tensesequences

WefoundWERreductionsin thehalf-datasetsonwhich
thefeatureweightswereestimated.For example,including
all 26POSfeatures,weobtainedaWERreductionof 0.6%.
Usinga reducedsubsetof 10POSaswell as15tense-tense
features(selectedbasedon thosewherethereferencetran-
scriptsshowedthemostdifferencefrom thetop-1hypothe-
ses),plustheotherfeaturesmentionedabove, resultedin a
WERreductionof 1.36%.

However, whenwe usedtheseweightson the held-out
sets,by andlarge thegainshave vanished,suggestingthat
overfittingisaseriousproblemevenwith onlyseveraldozen
features.We werefitting up to 50 featuresin a datasetof
573utterances,resultingin a reductionof up to 100errors.
Our otherconcern,aboutthe emergenceof local minima,
wasalsoprovenvalid: whenwe ranPowell’s algorithmon
thesamesetof featuresbut usingmultipledifferentstarting
values,theresultswereunstablefor someof thefeatures.

Giventhesenegative results,webecamemoreselective
aboutour features,usingonly a featureor two at a time in
eachcross-validatoryexperiment.In particular, we focused
on thepronounrepetitionfeatureandthefeaturesfor same
verb-tenserepetition.But evenin this moreselective mode
wewereunableto significantlyimprove WER on theheld-
out set. Whatever improvementswe occasionallyobtained
couldnot beprovenstatisticallysignificantdueto thesmall
sizeof theheld-utset.



Thusthefeaturesthatwereusefulin theBroadcastNews
domainwerenot helpful in theSwitchboarddomain.This
is likely becausetheSwitchboarddomainis lessstructured
thantheBroadcastNews domainandthesemanticandsyn-
tactic coherencethat our featurespick up in the latter are
much lessprominentin the former. In addition, Switch-
boardutterancestendto beshorter, whereasour featuresare
likely to be more useful in longerutteranceswhereword
repetitionsand multiple verb phrasesare more common.
Sincewe choseour featuresbasedon examinationof the
BN domain,our featuresmay have beenill-suited to the
task.

5.1. Conclusions from the experiments

We concludethat local minima, training time andoverfit-
ting areall significantobstacleseven whenthe numberof
dimensions(features)is just a dozenor so. In continuing
this work, weplanto focuson constructingfewer but more
powerful features,suchas the semanticcoherencefeature
mentionedin section4. Thiswill combatall threeproblems
simulataneously.

In addition,we note that both the featurehuntingand
featureweightingschemesweemployedusedonly thetop-
1 hypothesisin eachN-bestlist. As mentionedin section3,
this is suboptimal.The amountof dataavailablefor MCE
trainingcanbeeffectively increasedby makinguseof other
hypothesesfurtherdown theN-bestlist. We takethis up in
thenext section.

6. ALTERNATIVE WEIGHT OPTIMIZATION
CRITERIA

Let & QEm nom i representthefeaturevalue,or ’score’,of the b ’ th
featureasappliedto the p ’ th hypothesisin theN-bestlist for
utteranceq . We will write r!s m t to standfor thescorevector
rangingoverall valuesof b , andu for anassociatedweight
vector. Let

= & QEm n � u " r!s m t be the total weightedscore
assignedto hypothesisp of utteranceq , andlet 0wv � q _ p � be
thenumberof errorsin thathypothesis.Thentheobjective
functiontypically usedfor N-bestrescoringis:
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This functionattempsto directly minimizetop-1WER

on thedevelopmentset. To betterutilize the otherhypoth-
esisin tehN-bestlist, onemight considersomealternative
objective functions.For example:
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whereRCstandsfor rankcorrelation.Yetanotherchoice
is a rank-weightederrormeasure:
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With

S � � afastdecayingfunction.Finally onecoulduse
error-weightedrankor score:
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Furthermore,in trying to overcomethe computational

burdenof Powell’salgorithm,wehavetriedto re-castweight
optimizationasa regressionproblem.Noneof themeasurs
above aresuitablefor regressionthough,becausethey all
involve more thanonenon-linearlity. For converting into
simpleregression,Alex Rudnicky hadsuggestedthefollow-
ing: Let � QEm n � H if f 0�v � q _ p ����� (i.e. if this is thecorrect
hypothesis),and � Q)m n ��� otherwise,thenuse:

u �����
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yx-z{ OGQ�O�n � � QEm n c = & QEm n � C
This seemsto give up on lots of information though.

For now, it seemswe must continueto usea grid-search
algorithm.
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